Showing posts with label preamplifier. Show all posts
Showing posts with label preamplifier. Show all posts

Friday, October 4, 2013

RIAA Phono Preamplifier

Since modern sound systems usually lack inputs for record players, separate MD preamplifiers are becoming increasingly popular. They are needed not only by people who still regularly like to listen to vinyl records, but also by those who want to finally transcribe their LP collections to CD using a CD recorder. The author has built innumerable phono preamplifiers for friends and acquaintances. In many cases, for the sake of simplicity these were based on an old circuit design with two µA741s, which was originally described by B. Wolfenden in a 1976 issue of Wireless World.

In that simple design, the first 741 simply amplified the full range of the frequency spectrum, while the second one was fitted with RIAA frequency compensation — a fairly common configuration at that time. However, a variant on this classic design was recently born after a bit of experimenting. It also uses two opamps, with the difference that the RIAA frequency compensation is distributed over both opamps. The accompanying figure shows the schematic diagram of this preamplifier. The first opamp attenuates the signal at 6 dB/octave starting at 2.2 kHz, while the second opamp looks after the other corner frequency.

RIAA Phono Preamplifier Circuit Diagram
The objective of the new design was to keep the feedback factor as high as possible in both stages. To the considerable surprise of the developer, this modification turned out to have an unexpected side effect: when records were played, certain scratches were no longer audible! The difference between the new and old preamplifiers could be clearly heard; it was certainly not just imagination. What could be the cause of this? A quick calculation showed that a 0.05-mm scratch in a record groove moving past a needle at a speed of 0.5 m/s produces a square-wave pulse with a frequency of 10 kHz. Evidently, there is a lot to be gained by attenuating such pulses with a low-pass filter as early as possible, which means in the first stage, in order to prevent them from over-driving the rest of the circuit.
Continue Reading[...]

Thursday, April 11, 2013

Simple MD Catridge Preamplifier

Phonographs are gradually becoming a rarity. Most of them have had to yield to more advanced systems, such as CD players and recorders or (portable) MiniDisc player/recorders. This trend is recognized by manufacturers of audio installations, which means that the traditional phono input is missing on increasingly more systems. Hi-fi enthusiasts who want make digital versions of their existing collections of phonograph records on a CD or MD, discover that it is no longer possible to connect a phonograph to the system.

Simple MD Catridge Preamplifier circuit diagramHowever, with a limited amount of circuitry, it is possible to adapt the line input of a modern amplifier or recorder so that it can handle the low-level signals generated by the magnetodynamic cartridge of a phonograph. Of course, the circuit has to provide the well-known RIAA correction that must be used with these cartridges. The preamplifier shown here performs the job using only one opamp, four resistors and four capacitors. For a stereo version, you will naturally need two of everything. Any stabilized power supply that can deliver ±15V can be used as a power source.
Continue Reading[...]

Friday, March 29, 2013

Electric Guitar Preamplifier

Here is the circuit diagram of a guitar preamplifier that would accept any standard guitar pickup. It is also versatile in that it has two signal outputs. A typical example of using a pick-up attached to a guitar headstock is shown in Fig. 1. The pickup device has a transducer on one end and a jack on the other end. The jack can be plugged into a preamplifier circuit and then to a power amplifier system. The pickup device captures mechanical vibrations, usually from stringed instruments such as guitar or violin, and converts them into an electrical signal, which can then be amplified by an audio amplifier. It is most often mounted on the body of the instrument, but can also be attached to the bridge, neck, pick-guard or headstock.

1Electric-Guitar-Pre-Amplifier1

The first part of this preamplifier circuit shown in Fig. 2 is a single-transistor common-emitter amplifier with degenerative feedback in the emitter and a boot-strapped bias divider to secure optimal input impedance. With the component values shown here, the input impedance is above 50 kilo-ohms and the peak output voltage is about 2V RMS. Master-level-control potentiometer VR1 should be adjusted for minimal distortion. The input from guitar pickup is fed to this preamplifier at J1 terminal. The signal is buffered and processed by the op-amp circuit wired around IC TL071 (IC1). Set the gain using preset VR2. The circuit has a master and a slave control. RCA socket J2 is the master signal output socket and socket J3 is the slave.

Electric Guitar Preamplifier Circuit diagram:


It is much better to take the signal from J2 as the input to the power amplifier system or sound mixer. Output signals from J3 can be used to drive a standard headphone amplifier. Using potentiometer VR3, set the slave output signal level at J3. House the circuit in a metallic case. VR1 and VR3 should preferably be the types with metal enclosures. To prevent hum, ground the case and the enclosures. A well-regulated 9V DC power supply is crucial for this circuit. However, a standard 9V alkaline manganese battery can also be used to power the circuit. Switch S1 is a power on/off switch.

Source: http://www.ecircuitslab.com/2011/06/electric-guitar-preamplifier.html
Continue Reading[...]