Saturday, September 28, 2013

9V HEADPHONE AMPLIFIER NE5534 ELECTRONIC DIAGRAM

9V HEADPHONE AMPLIFIER NE5534 ELECTRONIC DIAGRAM

I have Used it with Sennheiser 465s and achieved ear-splitting volume. The amplifier is ideal as a booster for power-conserving stereo sources Such as portable CD players and for interfacing with passive EQ networks Such as tone controls or a headphone acoustic simulator.
Continue Reading[...]

Thursday, September 26, 2013

Discrete Voltage Regulator

The title of this article naturally raises the question of why we think that the generous selection of fully integrated voltage regulators needs to be extended with a version constructed using discrete components. In other words, what does this circuit offer that the well-known ‘three-leggers’ don’t have? To start with, we can point out that this circuit is refreshingly simple for a discrete version. Three semiconductors, three resistors, a capacitor and a diode are all it needs. Of course, that’s still more components than an integrated regulator, so what exactly are the advantages of this circuit?

Discrete Voltage Regulator circuit diagramThey are to be found in three areas: voltage range, bandwidth and current rating. The last of these is the primary strength of this circuit, since the maximum current depends only on the specifications of the output transistor. With the BD680, as used here, a current of 4 A can be delivered at a collect-emitter voltage of 10 V with adequate cooling (Rth = 3.12 K/W). The peak current is even 6 A. Try matching that with an integrated voltage regulator! The maximum input voltage is 30 V with the illustrated version of the circuit (UDSmax of T1), but this can easily be increased by using special high-voltage transistors.

table Discrete Voltage RegulatorThe same applies to the bandwidth, which can be extended as desired, without any modifications to the circuit, by using high-speed transistors. Generally speaking, wide bandwidth is also not one of the strong points of integrated voltage regulators. As noted, the circuit is basically very simple. A zener diode (D1) fed with a constant current of around 1mA by a JFET current source (T1) provides the reference potential. C1 is connected in parallel with D1 to provide well-behaved startup behaviour (soft start). This capacitor also provides additional buffering and decouples noise and other disturbances. The startup time is around three seconds.

The only additional item that is needed for the voltage regulator is an output buffer for the reference potential. This takes the form of a sort of super-Darlington using T2 and T3. This works very well, but has the disadvantage that the output voltage is a bit lower (one diode drop) than the Zener voltage. P1 can be added to correct this, but this does reduce the regulation of the circuit. If the voltage difference is not important, it is thus better to replace P1 with a wire jumper. The main specifications of the voltage regulator are listed in Table 1.
Continue Reading[...]

Tuesday, September 24, 2013

Luxury Car Interior Light

This circuit is much more modest, but certainly still worth the effort. It provides a high quality interior light delay. This is a feature that is included as standard with most modern cars, although the version with an automatic dimmer is generally only found in the more expensive models. With this circuit it is possible to upgrade second hand and mid-range models with an interior light delay that slowly dims after the door has been closed. The dimming of the light is implemented by means of pulse-width modulation. This requires a triangle wave oscillator and a comparator.

 completed Luxury Car Interior Light Circuit DiagramTwo opamps are generally required to generate a good triangle wave, but because the waveform doesn’t have to be accurate, we can make do with a single opamp. This results in the circuit around IC1.A, a relaxation oscillator supplying a square wave output. The voltage at the inverting input has more of a triangular shape. This signal can be used as long as we do not put too much of a load on it. The high impedance input of IC1.B certainly won’t cause problems in this respect. This opamp is used as a comparator and compares the voltage of the triangular wave with that across the door switch. When the door is open, the switch closes and creates a short to the chassis of the car.

parts layout Luxury Car Interior Light Circuit DiagramThe output of the opamp will then be high, causing T1 to conduct and the interior light will turn on. When the door is closed the light will continue to burn at full strength until the voltage across C2 reaches the lower side of the triangle wave (about 5 V). The comparator will now switch its output at the same rate of the triangle wave (about 500 Hz), with a slowly reducing pulse width, which results in a slowly reducing brightness of the interior light. R8 and C3 protect the circuit from voltage spikes that may be induced by the fast switching of the light. The delay and dimming time can be adjusted with R6 and C2. Smaller values result in shorter times. You can vary the dimming time on its own by adjusting R1, as this changes the amplitude of the triangle wave across C1.
Luxury Car Interior Light Circuit DiagramR7 limits the discharge current of C2; if this were too big,it would considerably reduce the lifespan of the capacitor. There is no need to worry about reducing the life of the car battery. The circuit consumes just 350 µA when the lamp is off and a TLC272 is used for the dual opamp. A TL082 will take about 1 mA. These values won’t discharge a normal car battery very quickly; the self-discharge is probably many times higher. It is also possible to use an LM358, TL072 or TL062 for IC1. R8 then needs to have a value between 47 Ω and 100 Ω. Since T1 is always either fully on or fully off, hardly any heat is generated.

At a current of 2 A the voltage drop across the transistor is about 100 mV, giving rise to a dissipation of 200 mW. This is such a small amount that no heatsink is required. The whole circuit can therefore remain very compact and should be easily fitted in the car, behind the fabric of the roof for example.

Resistors:
R1,R2,R6 = 120kΩ
R3,R4 = 100kΩ
R5 = 470Ω
R7 = 100Ω
R8 = 220Ω
Capacitors:
C1 = 10nF
C2 = 100µF-25V
C3 = 10µF-25V
Semiconductors:
T1 = BUZ10
IC1 = TLC272CP
Continue Reading[...]

Sunday, September 22, 2013

DC Control for Triacs

If a circuit is to switch a mains voltage, a relay is a simple solution in cases where switching times are long and high currents are involved. However, at lower currents, and in particular where rapid switching is required, such as in sound-to-light systems, a relay no longer fills the bill. Electrical isolation is often a requirement, which rules out driving a triac via a transistor. Here we use the MOC3041 optocoupler, which is specially designed for such applications, to drive a power triac. The control circuit therefore remains galvanically isolated from the mains. The internals of the optocoupler are somewhat more complex than appears from the circuit diagram. A special zero-crossing detector circuit in the optocoupler ensures that the connected triac is only triggered when the alternating mains voltage goes through zero.

DC Control for Triacs Circuit DiagramThis has the advantage of generating less interference compared to switching the triac at arbitrary phase in a cycle. Indeed, it means that we can dispense with the suppressor choke at the output that would otherwise be necessary. If very brief pulses are likely to be present at the input to the opto-coupler, a 220 nF capacitor should be connected between the input of the circuit and the emitter of T1 to lengthen the drive pulses. This ensures that the triac will be triggered even with very short input pulses, which might otherwise miss the zero-crossing point of the mains waveform. The triac should be an AW-suffix type. These types are less sensitive, but have higher dv/dt and di/dt specifications. The gate resistance must be constructed from two resistors connected in series, since normal resistors are not suitable for direct use with mains voltages. It is also necessary to exercise care around the opto-coupler. In order to guarantee Class II isolation the solder pads on the input and output sides must be separated by at least 6 mm. The leads may therefore need to be bent outwards when soldering.
Continue Reading[...]

Friday, September 20, 2013

1997 Chevrolet Blazer Electrical Wiring Diagram

1997 Chevrolet Blazer Electrical Wiring Diagram
The Part of 1997 Chevrolet Blazer Electrical Wiring Diagram: Cruise Control System, Defogger, Rear
Glass Release, Rear Wiper/Washer, Shift Interlock System, Transmission System, 6-Way Power Seat Circuit, A/C Circuit, etc. Computer Data Lines, Anti-lock Brake, Back-up Lamps Circuit, Charging Circuit, Keyless Entry, Engine Performance Circuits, Warning System, Courtesy Lamps, Door Lock Circuit, Electronic Transfer Case Circuit, Exterior Lamps, Front Wiper/Washer, Starting Schematics, Supplemental Restraint, Sealed Beam Headlamps, Horn, Instrument Cluster Circuit, Instrument Illumination, Power Distribution Circuit, Headlight, Ground Distribution, Power Mirror, Power Window, Power Window Diagram, Features: Power windows, power door locks, anti-lock braking, dual air bag, power mirrors, cruise control, air conditioner, AM-FM stereo radio with CD, 4.3-liter Vortec V-6 engine, four-speed automatic gearbox.
Continue Reading[...]

Thursday, September 12, 2013

Simple FM Transmitter Circuit Diagram

This circuit is a simple two transistor (2N2222) FM transmitter. No license is required for this transmitter according to FCC regulations regarding wireless microphones. If powered by a 9 volt battery and used with an antenna no longer than 12 inches, the transmitter will be within the FCC limits.

The microphone is amplified by Q1. Q2, C5, and L1 form an oscillator that operates in the 80 to 130 MHz range. The oscillator is voltage controlled, so it is modulated by the audio signal that is applied to the base of Q2. R6 limits the input to the RF section, and its value can be adjusted as necessary to limit the volume of the input. L1 and C6 can be made with wire and a pencil. The inductor (L1) is made by winding two pieces of 24 gauge insulated wire, laid side by side, around a pencil six times. Remove the coil you have formed and unscrew the two coils apart from each other. 

  FM Transmitter Circuit Diagram

  FM Transmitter Circuit Diagram


One of these coils (the better looking of the two) will be used in the tank circuit, and the other can be used in the next one you build. The antenna (24 gauge wire) should be soldered to the coil you made, about 2 turns up from the bottom, on the transistor side, and should be 8-12 inches long. To make C6, take a 4 inch piece of 24 gauge insulated wire, bend it over double and, beginning 1/2" from the open end, twist the wire as if you were forming a rope. When you have about 1" of twisted wire, stop and cut the looped end off, leaving about 1/2" of twisted wire (this forms the capacitor) and 1/2" of untwisted wire for leads.
Continue Reading[...]

Tuesday, September 10, 2013

Touch Controlled Mute Switch Circuit Diagram

Here is another simple circuit to mute the volume of Audio devices through simple touch. It exploits the action of the flip-flops in the timer IC 555 to reduce the volume of the Audio amplifier. IC NE555 is designed in the toggle mode. Its lower and upper comparator inputs are connected to the touch plates which can be membrane switches or two pieces of conducting plates. The inputs of comparators are stabilized through R1 and R2 to avoid floating.

Touch controlled Mute switch circuit diagram

 Touch Controlled Mute Switch Circuit Diagram

 
When the touch plate connected to pin 2 is touched momentarily, output of IC1 goes high and T1 conducts. The centre tap of the volume control is connected to the collector of T1. So when T1 conducts current going to the amplifier drains through T1. This reduces the volume.IC1 remains latched in this position with LED on. When the touch plate connected to pin 6 is touched momentarily, output of IC1 goes low and T1 turns off. This restores the volume.

Continue Reading[...]

Wednesday, September 4, 2013

Dual Level Liquid Sensor

This level liquid sensor electronic circuit diagram is based on a common Ca3410 operational amplifier IC . This level liquid sensor electronic circuit use two plates sensors ( two probes ) , one for the high level an one for low level .

Dual Level Liquid Sensor Circuit Diagram


If the level of the liquid is not in the adjusted range the LED will glow . The circuit require just a CA3410 operational amplifier and other few common components . This dual liquid level sensor require a 15 volt DC power supply circuit .
Continue Reading[...]

Monday, September 2, 2013

2 Cell Lithium Ion Charger

This circuit was build to charge a couple series Lithium cells (3.6 volts each, 1 Amp Hour capacity) installed in a portable transistor radio. The charger operates by supplying a short current pulse through a series resistor and then monitoring the battery voltage to determine if another pulse is required. The current can be adjusted by changing the series resistor or adjusting the input voltage.

When the battery is low, the current pulses are spaced close together so that a somewhat constant current is present. As the batteries reach full charge, the pulses are spaced farther apart and the full charge condition is indicated by the LED blinking at a slower rate. A TL431, band gap voltage reference (2.5 volts) is used on pin 6 of the comparator so the comparator output will switch low, triggering the 555 timer when the voltage at pin 7 is less than 2.5 volts.

The 555 output turns on the 2 transistors and the batteries charge for about 30 milliseconds. When the charge pulse ends, the battery voltage is measured and divided down by the combination 20K, 8.2K and 620 ohm resistors so when the battery voltage reaches 8.2 volts, the input at pin 7 of the comparator will rise slightly above 2.5 volts and the circuit will stop charging.

2 Cell Lithium Ion Charger Circuit diagram


2 Cell Lithium Ion Charger

The circuit could be used to charge other types of batteries such as Ni-Cad, NiMh or lead acid, but the shut-off voltage will need to be adjusted by changing the 8.2K and 620 ohm resistors so that the input to the comparator remains at 2.5 volts when the terminal battery voltage is reached. For example, to charge a 6 volt lead acid battery to a limit of 7 volts, the current through the 20K resistor will be (7-2.5)/ 20K = 225 microamps. This means the combination of the other 2 resistors (8.2K and 620) must be R=E/I = 2.5/ 225 uA = 11,111 ohms. But this is not a standard value, so you could use a 10K in series with a 1.1K, or some other values that total 11.11K

Be careful not to overcharge the batteries. I would recommend using a large capacitor in place of the battery to test the circuit and verify it shuts off at the correct voltage.
Continue Reading[...]